A shape-based approach to change detection of lakes using time series remote sensing images

نویسندگان

  • Jiang Li
  • Ram M. Narayanan
چکیده

Shape analysis has not been considered in remote sensing as extensively as in other pattern recognition applications. However, shapes such as those of geometric patterns in agriculture and irregular boundaries of lakes can be extracted from the remotely sensed imagery even at relatively coarse spatial resolutions. This paper presents a procedure for efficiently retrieving and representing shapes of interesting features in remotely sensed imagery using supervised classification, object recognition, parametric contour tracing, and proposed piecewise linear polygonal approximation techniques. In addition, shape similarity can be measured by means of a computationally efficient metric. The study was conducted on a time series of radiometric and geometric rectified Landsat Multispectral Scanner (MSS) images and Thematic Mapper (TM) images, covering the scenes containing lakes in the Nebraska Sand Hills region. The results validate the effectiveness of the proposed processing chain in change detection of lake shapes and show that shape similarity is an important parameter in quantitatively measuring the spatial variations of objects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape-based Change Detection and Information Mining in Remote Sensing

Change detection is an important application of remote sensing. This paper presents our approach to retrieve and represent interesting shapes in the remotely sensed imagery using supervised classification, edge detection, and polygonal approximation techniques, and to compare the shape similarity by a computationally efficient metric. The experiments were conducted on a time series of calibrate...

متن کامل

Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images

In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...

متن کامل

Herbal plants zoning using target detection algorithms on time-series of Sentinel-2 multispectral images (Amygdalus Scoparia)

Today, medicinal plants have a special place in the economy and health of a society. Due to the natural growth of many of these products, the necessity of zoning them for optimum and optimal utilization seems necessary. Traditional zoning solutions are not efficient due to their low accuracy and speed, therefore a new approach is needed. Remote sensing data have many applications in various fie...

متن کامل

Change Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images

The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...

متن کامل

Detection of Land Use Changes for Thirty Years Using Remote Sensing and GIS (Case Study: Ardestan Area)

Due to the increase of changes in the land uses mainly resulting from humaninterferences, monitoring the changes and evaluating their trend and environmental effectsfor future planning and management are essential. In the present study, an attempt is madeto observe the changes which had occurred in Ardestan area during a period of 30 yearsusing some satellite images. Different kinds of data for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003